EVALUTION OF LOAD LIFTING CAPACITY OF FEMALE WORKER IN CONSTRUCTION WORK BY USING A FUZZY LOGIC APPROACH

Manish Kumar Sagar ${ }^{1}$, Manvendra Singh kushwah², Sharad Agrawal ${ }^{3}$

Abstract

Work-related musculoskeletal injuries are often associated with overexertion of the body at construction work. The manual material handling activity of lifting is a major source of work related musculoskeletal disorders. Low back disorders (LBD) are most vital problem of female workers who work at construction site and in industry. This problem associated with high costs to the individual and can influence the quality of work and health of female workers. In this paper, researcher work to evaluate load lifting capacity of female worker which play an important role to mitigate lower back ach problem of female worker. In manual material handling, Researcher used the fuzzy logic approach for the same.

KEYWORDS- Manual Material Handling (MMH), Load Lifting, Fuzzy Logic, low back disorders, Female workers.

I. INTRODUCTION

Manual material handling (MMH), especially lifting, represents a major occupational safety and health risk in construction industry. Musculoskeletal and low back disorders are often attributed to overexertion of the body and disabilities associated with MMH tasks, among which LBDs represent the most common and most costly musculoskeletal disorder experienced in the workplace. There are kinds of injuries and ergonomic principles in the design and evaluation of human work has been advocated and promoted in the work place to minimize the occurrence of work related musculoskeletal injuries. The Factory Act,

II. LITERATURE REVIEW

Load Lifting Capacity (LLC) is determined by the workers, as the highest acceptable workload, which can be lifted comfortably

1948, does not indicate the safe load limit for Indian population. In Maharashtra (one of the developing state in India) the Maharashtra Factory Act (Rules no. 66) specified the maximum limit of weight handled by an adult female worker as 30 kg which seems to be heavy for the workers. According to Joshi et al. (2001), the existing Indian Factory rule inadvertently created the occupational health hazard conditions in industries. Now researchers are going to find the way with age and strength of female worker. In this paper researchers use the fuzzy logic approach for calculating maximum load lifting capacity for each group of female worker for safe handling in construction work.
based on their perceived exhaustion level (Gamberale, 1985). (Snook, 1978; Legg and Myles, 1981) Use of psychophysical method in determining LLC in repetitive lifting jobs is well established. Snook (1978) first
introduced the term LLC for the industrial workers engaged in different types of repetitive lifting tasks. In his report, Snook proposed a methodology to determine LLC where the subjects are asked to select the maximum acceptable load effectively of their own choice that they can lift under a specific condition for 8 -hours workday 'without straining themselves or without becoming unusually tired, overheated, weakened or out of breath'.
In 1981, National Institute for Occupational Safety and Health (NIOSH) recognized the growing problem of work-related back injuries and published a summary of liftingrelated literature. It also provided a lifting equation for calculating a recommended weight for specified two-handed, symmetrical lifting tasks, an approach for controlling the hazards of low back injury from manual lifting (NIOSH, 1981). In 1991, NIOSH committee selected this psychophysical criterion as an alternative determinant for estimating the safe load limit. In this criterion, it is mentioned that the estimated load will be accepted by 99% of male workers and 75% of female workers, or 90% of the whole working population (i.e. in a population of equal number of male and females) a revised lifting equation was developed with more number of lifting parameters (Watwers et al., 1993) (Karwowski 1991). In a study on rate of perceived exertion (RPE), showed that while selecting the maximum acceptable weight for 8 hour job, the female subjects rated the load as moderate or heavy weight, whereas most of the male subjects rated the load as either heavy or very heavy. Therefore, the researcher concluded that the female subjects were more realistic with respect to subjective perception of load
heaviness in selecting LLC value. Kelsey et al. (1984) also reported similar results.
Mital (1983) reported that at the end of 8 hour, females were lifting only 85% of the load that they had selected at the beginning of the psychophysical experiment. This is because with the advancement of work time, the work efficiency decreases. Several studies (Ayoub et al., 1978; Snook, 1978; Mital, 1984) mention that 20-30 minute experimental work duration is adequate to estimate the appropriate workload for an 8 hour or 12 hour workday. Ayoub and Mital (1989) categorically mentioned that 40-45 minute work period is sufficient to determine the weight, which the subject can lift for 12 hour duration even if it includes 4 hour overtime about which they have no prior warning.
Snook (1978) provided a 40 minute adjustment period to allow the participants to monitor their own feelings and adjust the load weight. Some researchers (Garg and Saxena, 1982; Garg and Beller, 1994) used a longer adjustment period (i.e. 45, 50, or 60 minute). Again, in other studies (Mital, 1983, 1984; Karwowski and Yates, 1986; Mital and Aghazadeh, 1987; Zhu and Zhang 1990; Chen et al., 1992), it is mentioned that participants could determine the LLC load weight within shorter adjustment period. In these studies, the authors identified many factors affecting this perceived subjective response such as, workers and load characteristics, type of task, work environment etc. and also load weight factor. Researchers (Chiuhsiang J.LIN, Shun J.WANG\& Hung j.CHEN) suggested the use of ergonomic principles in the design and evaluation of human work has been advocated and promoted in the work place to minimize the occurrence of work related musculoskeletal injuries.

III- FUZZYLOGIC

Fuzzy logic is a powerful problem-solving methodology with many applications in embedded control and information processing. Fuzzy gives a wonderful simple approach to draw definite conclusions from vague information. In a common sense, fuzzy logic resembles human decision making mechanism with its ability to work from approximate data and get accurate solutions. Regarding fuzzy theory as a single theory, the process of "fuzzification" should be regarded as a methodology to generalize

III - A ACCEPTABLE LOAD

For evaluating the acceptable load for female worker in the construction site, Researcher takes age and strength as inputs in the fuzzy controller. Then fuzzifying the inputs (developing fuzzy set), applying "ifthen" rule and defuzzifying output results.
any specific theory from a crisp (discrete) to a continuous fuzzy form. Fuzzy are automobiles, autonomous vehicles, chemical process and robotics (T.J. Ross 2004). These successful applications are attributes to the fact that fuzzy system is knowledge based or rule-based system. We have applied this technique to find out the acceptable load for female worker working in Construction Company according to their age and capacity. The flow chart of fuzzy logic is shown in below figure

Algorithms have been successfully applied to a variety of industrial application.

Figure1: Fuzzyprocess

III- B. FLOW CHART

Figure 2:Flow chart of fuggy logic

III-C. LINGUISTIC VARIABLE

Female Worker's age and strength are interpreted as the linguistic variables which have some of linguistics values as follow.
Age: (in years)
(VYA, LYA, YA, LMA, MA, UMA, LE, ME, UE,) [(VYA ≤ 20), (LYA)(15-25), (YA) (20-30), (LMA) (25-35), (MA) (30-40), ((UMA)(35-45), (LE)(40-50), (ME)(45-

III-D. FUZZY SETS
Fuzzy sets are prepared between Female worker age (in yrs) and
55),(UE)($\geq 50)$]

Strength: (in kg)

(VL, L, M, H, VH)
[(VL) (<10), (L) (5-15), (M) (10-20), (H) (15-25), (VH) ≥ 20]

Output load lifting constant:

(VL, L, LM, M, UM, H, VH)
[(VL) (<10), (L)(5-15), (LM)(10-20), (M)(15-25), (UM) (20-30), (H) (25-35), (VH) (≥ 35)

DOM (degree of membership) which shown in figure 4.1.

Figure 4.1 for fuzzy set of age

Fuzzy sets are prepared between Female
membership) which shown in figure 4.2 worker Strength (kg) and DOM (degree of

Fuzzy sets are prepared between Load
membership) which shown in figure 4.3 Lifting Constant (kg) and DOM (degree of

III- E. FUZZIFICATION OF INPUTS

Following formula is utilized to compute the
fig 5.1. membership value of antecedents, shown in

Degree of membership for triangle:

$$
\mu(\mathrm{x})=\operatorname{Min}\left[\begin{array}{l}
\text { Delta } 1 \times \text { Slope1 } \\
\text { Delta2 } \times \text { Slope2 } \\
\text { Max }
\end{array}\right]
$$

Calculation of Load Constant at medium Capacity:

Where Delta1 = Point X - Point 1 \&
Delta2 $=$ Point $2-$ Point X
If Delta $1 \leq 0 \quad \& \quad$ Delta $2 \leq 0$
Then Degree of membership $=0$

Let normalized value of age $\mathrm{X}=20$ years then qualifying fuzzy set are shown Fig.5.2

Figure 5.2 for fuzzy set of 20
year age group

Fuzzy membership function of X for LYA
Delta 1 = Point X - Point 1,
Delta $2=$ point 2- Point X
Delta $1=20-15=5$
Delta $2=25-20=5$
Slope $1=1 / 5=.2$
Slope2 $=1 / 5=.2$
There for degree of membership function for LYA

$$
(\mathrm{X})=\mathrm{Min} .
$$

$$
\mu(X)_{\text {LYA }}=\operatorname{Min}\left[\begin{array}{c}
5 \times .2 \\
5 \times .2 \\
1
\end{array}\right]=1
$$

The Membership function of X with remaining fuzzy sets namely VYA, YA, LMA, MA, UMA, LE, ME, UE is zero (since value of delta $1 \&$ delta 2 is negative)

Similarly let the normalized value of strength be $X=16 \mathrm{~kg}$. Then qualifying fuzzy set is shown Fig. 5.3.

Figure 5.3 tor fuzzy set of medium \& Higher strength

Fuzzy membership function of X for M
Delta $1=16-10=6$,
Delta $2=20-16=4$
Slope $1=1 / 5=.2$,
Slope $2=1 / 5=.2$
There for degree of membership function for M
$(\mathrm{X})=\mathrm{Min}$

$$
\mu(X)_{\mathrm{m}}=\operatorname{Min}\left(\begin{array}{c}
6 \times .2 \\
4 \times .2 \\
1
\end{array}\right)=.8
$$

Fuzzy membership function of X for H
Delta $1=16-15=1$,
Delta $2=25-16=9$

Slope $1=1 / 5=.2$,
Slope $2=1 / 5=.2$
There for degree of membership function for H

$$
(\mathrm{X})=\mathrm{Min}
$$

$$
\mu(X)_{h}=\operatorname{Min}\left(\begin{array}{c}
1 \times .2 \\
9 \times .2 \\
1
\end{array}\right)=.2
$$

Therefore Membership function of X with remaining fuzzy sets namely VL, L, VH is zero. (Since value of delta $1 \&$ delta 2 is negative)

If than rule -

1. If age is LYA and capacity is L then load const is LM.
2. If age is LYA and capacity is M then load const is M .
3. If age is LYA and capacity is H then load const is UM.

Rule strength computation -

Rule strength is obtained by computing the minimum of the membership function of antecedents.

Rule 1 :

$$
\operatorname{Min}(1,0)=0
$$

Rule $2: \quad \operatorname{Min}(1, .8)=.8$
For measured the value of age $X=20$ years \& medium strength $X=16 \mathrm{~kg}$, the fuzzy
4. If age is LYA and capacity is VL then load const. is L.
5. If age is LYA and capacity is VH then load const is H .

Rule $3: \quad \operatorname{Min}(1,0)=0$

Rule $4: \quad \operatorname{Min}(1,0)=0$

Rule $5: \quad \operatorname{Min}(1, .2)=.2$

Figure 5.4 for fuzzification of inputs

Defuzzification - Center of gravity method is applied to defuzzifying the output. Fig shows the computation of C.G. for two
computing outputs of rule 2 \& rule 5 with strength $.8, .2$. According to rule 2 outputs is medium \& according to rule 5 outputs is high.

Figure 5.5 for defuzzification

Table shows area and C.G. calculations

S.NO.	Area (A)	$\ddot{\mathbf{X}}$	$\mathbf{A \ddot { \mathbf { X } }}$
1.	$1 / 2 \times 4 \times .8=1.6$	12.66	20.26
2.	$2 \times .8=1.6$	15	24
3.	$2 \times .2=.4$	17	6.8
4.	$1 / 2 \times 2 \times .6=.6$	17.33	10.39
5	$5 \times .2=1.0$	20.5	20.5
6.	$1 / 2 \times 2 \times .2=.2$	24.66	4.93
$\sum \mathrm{~A}=5.4$			
$\mathrm{X}=\sum \mathrm{A} \ddot{\mathrm{X}} / \sum \mathrm{A}=86.88 / 5.4=16.08$			

By similar process load constant is calculated for different age group at

III. Result and Conclusion:

Researcher identifies these parameters and calculates feasible values of load lifting constant. This study was done on adult female construction workers (having age of 18-45 years), who were regularly overexerted in their working places. From this study, Load lifting constant is estimated
different strength, which are shown in below table.
around 15 kg . This method will help to estimate the LLC level for variable work duration. This study strongly suggests that the existing factory rule needed to be modified for the welfare of the workers' health.

Table: Load constant for different age group

Strength Age \downarrow	Load Lifting Constant (kg)			
	$\mathbf{1 3 k g}$	$\mathbf{1 6 k g}$	$\mathbf{1 9 k g}$	$\mathbf{2 4 k g}$
$\mathbf{2 0}$	15.20	16.08	19.38	20.01
$\mathbf{2 5}$	20.44	17.43	20.57	21.01
$\mathbf{3 0}$	15.21	16.08	19.38	20.01
$\mathbf{3 5}$	12.95	16.02	18.38	18.08
$\mathbf{4 0}$	12.95	15.08	17.57	17.38

REFERENCES

[1] Chiuhsiang J. LIN, Shun J.WANG \& Hung J.CHEN (2006), ‘A field evaluation method for assessing whole body biomechanical joint stress in manual lifting tasks", industrial health Vol.No. 44 PP-604-612.
[2] T.J. Ross (2004), 'Fuzzy logic with engineering Applications", second ed, Wiely \& Sons.
[3] Woolf A. \&Pfleger B., (2003) 'Burden of major musculoskeletal conditions", Bulletin of the World health organization, Vol 81 No.9, pp 646-656.
[4] J.W. Frymoyer (ed.), the adult spine and principles and practice.
[5] Estimating the global burden of low back pain Attributable to combined Occupational Exposure", American journal of industrial medicine, Vol. 48 PP 459-469
[6] B.S. Webster and S.H. Snook, (1994), 'the cost of 1989 Workers compensation low back pain claims", spine, Vol. No. 19, PP- 1111
[7] B.A. Martin, S.G. Bigos and D.M. Spengler,(1986), 'Back injuries in industry: a retrospective study", overview and cost analysis, spine , Vol. No.11, PP-241 - 245
[8] NIOSH (National Institute for Occupational Safty and health) (1981), 'A work practices Guide for Manual lifting". Technical report No. 81-122. U.S. Department of health and Human services (NIOSH), Cincinnati, OH.
[9] S.H. Snook (1978), 'the design of manual handling task", Ergonomics Vol.No. 21, PP- 963 985

APPENDIX 1

Table1:DataCollededfrom theconstructionside

S.No.	Name of worker	Age (Yrs)	Weight of worker (Kg)	Height of Worker (c.m.)	Lifted weight (kg)
1	Ram kali	28	38	140	9.7
2	Jay shree	24	42	146	9
3	Meena	26	41	147	9.5
4	Anguri	27	41.5	148	9
5	Geeta bai	28	44	151	9.6
6	Aneeta ba.	45	48	160	8.2
7	Sumitra	38	50	145	9
8	Dularin b.	42	54	151	8.9
9	Shanti	18	42	148	13
10	Kamla	45	46	139	9
11	Lakshmi	32	49	144	11
12	Shivani	46	51	153	9
13	Shubhadra	26	49	148	12.2
14	Leela Bati	28	46	147	12.5
15	Ram bati	29	47	147	12
16	Shri devi	18	46	151	13.2
17	Ram sakhi	23	42	152	14

18	Babeeta	21	43	150	12
19	Sarita bai	31	49	148	14
20	Rakhi	30	48	151	12
21	Anjali	28	46	146	11
22	Sangeeta	29	45	152	12.6
23	Puja devi	33	47	151	11
24	Kallo	34	43	150	10
25	Raj kum.	35	48	142	12
26	Puchko b.	31	46	146	9.8
27	Bhutta de.	34	48	151	9
28	Bhuree	26	48	149	10.3
29	Fool bati	24	47	150	12
30	Bitoli	25	43	152	11.2
31	Manno	22	46	146	14
32	Mula	26	51	145	12.8
33	Bekunthi	28	49	147	12.3
34	Guddi bai	24	48	148	13
35	Rani	21	42	146	13.2
36	Chhoti bai	23	48	149	12
37	Kamla	21	40	151	13.3
38	Ramurti	19	42	146	13.4
39	Kishori	20	43	148	9.7
40	Ram shri	18	44	148	12.7

41	Malti	21	49	142	13.7	107	Leela bai	49	58	148	9
42	Pushpa	24	47	151	12.8	108	Prema ba	29	52	129	13
43	Bina ku.	31	54	149	11	109	Maya	27	42	132	17
44	Bhuri	28	48	138	11.7	110	Ramheti	23	48	144	24
45	Shalu	45	56	139	8	111	Lalita	32	45	148	23
46	Suman	42	51	142	9	112	Samanti	28	49	132	21
47	Uma	38	43	138	8	113	Ramkany	23	48	145	20
48	Jai devi	28	45	146	11	114	Dropati	25	42	142	19
49	Gaytri	33	39	136	7	115	Bhagvati	27	41	151	23
50	Shyam de.	27	45	144	12	116	Ganga	18	47	153	25
51	Surti	18	42	142	13	117	Janki	23	54	145	17
52	Sushila	22	49	143	14	118	Kranti	26	49	142	18
53	Bejanti	26	44	151	14.5	119	Guddi	29	45	138	17
54	Manju	23	52	153	13	120	Sita	28	39	132	17
55	Ruchi	25	44	149	14	121	Badami	24	43	147	21
56	Mohini	19	47	132	15	122	Foolbati	43	54	152	22
57	Gopi bai	21	49	132	10	123	Bitta	45	52	142	13
58	Arushi	26	38	135	8	124	Rampyari	41	54	145	16
59	Baijanti	24	43	143	17	125	Daduya	43	52	147	13
60	Sunita	34	46	151	16	126	Kalyani	32	53	139	15
61	Munnibai	46	43	134	15	127	Sarupi	21	51	142	17
62	Ramnathi	43	53	140	14	128	Chhato	18	48	143	13
63	Kamla	34	39	137	12	129	Gilasi	23	42	142	17
64	Rukhman	29	41	142	15	130	Motya	36	57	149	18
65	Kedari	32	44	153	16	131	Kamleshi	32	52	152	19
66	Dropati	25	38	131	18	132	Suaa bai	36	42	142	11
67	Leela	23	37	137	11	133	Kapuri	23	46	147	10
68	Manju	24	44	139	14	134	Salin	31	51	143	8
69	Kedari	23	42	136	17	135	Dulli	21	48	139	17
70	Brima	21	47	138	19	136	Sureshiba	29	42	142	14
71	Guddi	19	40	142	17	137	Samita	34	51	149	15
72	Jasoda	23	35	137	12	138	Katlo	38	58	143	12
73	Dwarika	33	39	143	17	139	Sawal	42	52	147	17
74	Ram pati	32	41	139	16	140	Kaushlya	49	59	142	8
75	Sarupi	27	47	145	15	141	Laksho	53	49	146	9
76	Lhori	28	46	142	18	142	Ratni	51	54	149	11
77	Somoti	24	45	153	19	143	Imarati	43	57	142	13
78	Sushila	23	41	155	16	144	Siya bai	53	59	148	9
79	Rukhmani	23	43	157	15	145	Dhappo	28	45	142	16
80	Hirbo	23	45	138	16	146	Shakuntla	24	49	149	14
81	Dulari	38	49	159	14	147	Basanti	36	41	137	11
82	Kala	21	54	143	18	148	Kusum	27	43	130	19
83	Bhagvati	32	52	130	19	149	Jyoti	25	49	143	16
84	Harheti	20	48	147	24	150	Meena	29	45	151	19
85	Foolobai	23	43	145	19	151	Gaytri	32	39	142	12
86	Leela	18	54	158	23	152	Rampyari	33	41	139	10
87	Sarupi	19	47	149	21	153	Archna	37	44	143	13
88	Janki	18	42	138	22	154	Narmada	32	49	145	21
89	Rambati	19	43	137	21	155	Sona bai	51	58	152	12
90	Ramheti	23	45	147	25	156	Latabai	42	45	149	14
91	Chandni	32	43	146	12	157	Shakuntla	27	44	137	22
92	Kamla	23	46	138	24	158	Lakshmi	23	47	150	16
93	Papita	29	42	141	20	159	Chunmun	33	48	143	14
94	Dhappo	21	48	138	21	160	Kishori	23	46	149	11
95	Tulsi	19	46	153	23	161	Ram kali	22	49	143	12
96	Dropati	23	45	139	23	162	Hemvati	28	23	135	16
97	Bhuri	26	43	135	22	163	Leela	18	43	134	21
98	Kailasi	27	47	145	17	164	Ram bati	19	46	143	22
99	Gullo	28	43	141	19	165	Puspa	21	54	154	19
100	Barfi bai	27	41	143	21	166	Yasoda	22	45	143	17
101	Ramrati	21	47	139	24	167	Prembati	32	54	137	14
102	Tursa	22	39	145	23	168	Bhagbati	33	45	149	11
103	Kabuli	27	38	137	24	169	Ramola	32	41	139	16
104	Geeta	28	41	148	14	170	Mamta	23	43	130	12
105	Bhagvati	29	47	143	18	171	Guddan	27	39	143	11
106	Sunita	45	48	147	15	172	Jamuna	19	47	150	9

173	Chhoti	28	56	148	16
174	Anita	19	51	139	11
175	Janki	32	45	138	15
176	Prema	34	49	140	9

177	Maya	23	43	138	12
178	Parvati	33	43	137	11
179	Meenu	19	52	144	21
180	Pushplata	32	56	138	11

APPENDEX2.

VYA	-	Very Young Age			
LYA	-	Lower Young Age	H	-	High
YA	-	Young Age	VL	-	Very High
LMA	-	Lower Middle Age	L	-	Very Low
MA	-	Middle Age	LM	-	Low
UMA	-	Upper Middle Age	M	-	Medium
LE	-	Low Elder	UM	-	Upper Medium
ME	-	Medium Elder			
UE	-	Upper Elder			

?

